Skip to navigation

Understanding Metal 3D Printing: Powder Media, High Energy Events

3D metal printing technology has developed significantly in recent years. The technologies initially generated a significant amount of hype, due to the range of possibilities it opened up in manufacturing. Today, metal 3D printing has become more accessible, scalable, and robust, while 3D printed metal strength has allowed for a variety of manufacturing applications across industries.


There are a few different types of metal 3D printing technologies. While each method is different, all processes for 3D printing metal parts are made possible by use of powder-based metal media and a high-energy event during the printing process.


This blog post explains the significance of powder-based metal media and high-energy events, as parts of the overall metal 3D printing process.

Powder Metal Media

Metal 3D printing media typically contains metal powder, either raw or as a base. While a few technologies utilize a metal wire feedstock, these are the exception and not the norm.


Why do metal 3D printers generally use powder? Additive manufacturing involves the deposition of material in a precise manner. Plastic filaments can be easily heated and extruded through a nozzle, unlike with metal 3D printer filament.


However, most metals have high melting temperatures, which makes extrusion infeasible. As few materials can survive prolonged contact with molten metal, equipment would be nearly impossible to manufacture.


While wire-fed metal printers rely on electric arc-welding to form functional parts, the welding process can produce crude surfaces that are only usable after machining. Thermal gradients generated during the welding process can also introduce high levels of internal stress — resulting in significant warping.


Powder metal based processes, on the other hand, protect valuable 3D printer components from exposure to molten metal. This can work in one of two ways — having the 3D printer apply extremely localized energy with a laser — or, by having the 3D printer itself use a low energy process, with high energy sintering done in furnaces afterwards.


Sintering transforms a lightly bound part into a full metal part. To do this, the temperature is ramped up slowly to burn away the trace amounts of remaining binding material. As the temperature ramps up closer to the melting point of the material, the metal particles fuse together to create a strong metal part.


Loose Powder vs. Bound Powder. While the use of loose powder is common in industrial 3D printer metal, these powders carry significant safety and handling concerns. Due to high flammability and respiratory risk, loose powder must only be handled in controlled environments with personal protective equipment (PPE).


Bound powder, a technology used in metal FFF, is safer and less flammable than loose powder. Unlike loose powder, it does not require specialized PPE or dedicated rooms to deploy. However, bound powder solutions require extra steps to remove binding material and sinter the metal printing media into fully metal parts.

An overview of which 3D metal printing processes use loose powder vs. bound powder, and if the high energy event is sintering during printing vs. after printing.

High Energy Events

In metal additive manufacturing, 3D printers alter the chemical phase of the printing media at some point during the process. Unlike plastics which have relatively low melting temperatures between 200C and 400C, metals have melting points in the 1100 to 1400C range.


With such high melting points, any metal 3D printing technology must include a high energy process at some point during the printing process. A high energy process exists in all metal 3D printing processes. However, individual techniques can vary by when and how they apply it:


During printing, as a means to form the part. Some printing processes build parts by metallically fusing them together, usually with a laser. This type of high energy process is precise and isolated: it only reaches the specific section of a part being printed.


As a result of this type of isolated high energy process, many parts will be printed with internal stresses that must be thermally cured afterwards.


After printing, as a means to metallically fuse an already formed part. For these processes the part is formed using a low energy process, then metallically fused after printing using a high energy sintering furnace. This process works for both loose powder and bound powder-based machines. While parts made through this process do not typically have internal stresses, they do require an additional sintering step in the 3D metal printing process.

모든 블로그와 블로그에 포함된 정보의 저작권은 마크포지드에 있으며, 당사의 서면 허가 없이 어떤 방식으로든 복사, 수정 또는 채택할 수 없습니다. 당사의 블로그에는 당사의 서비스 마크 또는 상표뿐만 아니라 계열사의 상표가 포함될 수 있습니다. 귀하가 당사의 블로그를 사용한다고 해서 당사의 사전 허가 없이 당사의 서비스 마크 또는 상표를 사용할 수 있는 권리나 라이선스가 부여되는 것은 아닙니다. 당사 블로그에서 제공되는 상표 정보는 전문적인 조언으로 간주되어서는 안 됩니다. 당사는 새로운 정보, 후속 이벤트 등을 바탕으로 블로그를 업데이트하거나 수정할 의무가 없습니다.

새로운 정보를 놓치지 마세요

Markforged의 최신 컨텐츠를 편지함으로 받으시려면 구독하십시오.