Skip to navigation

Markforged 3D Printed Part: Spool Dispenser

Here at Markforged, we’re constantly subjecting our printers to a barrage of diverse testing. Our goal is torture our printers in house harder than our most demanding customers. One of the ways we find new and complicated geometries to test is by integrating industrial strength 3D printing extensively in our in-house operations. Whether it’s rapidly iterated test fixtures for our hardware R&D, or jigs for our in-house Production Operations team, Mark One and Mark Two printers are constantly relied upon to enable quick, continuous innovation and improvement for all of our company operations. Why do we place such a high value as a company on 3D printed parts? Beyond the immediate benefits of continually performing long-term usage testing on our printers, this company culture allows us to experience the perspective of our current customers. Just as importantly, it allows us to demonstrate the value of continuous improvement that a high strength 3D printed part can bring to a company making physical products.

A great example of how we’ve put these principles to work currently lives in our material production department. Markforged’s highly engineered composite filaments are produced in-house on our custom manufacturing line on large format reservoir spools. The carbon fiber, Kevlar, or fiberglass filaments are then spooled in smaller volumes on our end-use spools that our customers use every day. With thousands of spools passing through manufacturing every month, any inefficiencies in processing time per spool quickly adds up to huge losses in potential productivity. Two of our operations techinicians, Jazmin and Faisal, were quick to note that the process of individually picking empty spools for composite fiber filling from the supply carton they arrive in was slow and wasteful, but the current workflow of stacking large piles of spools haphazardly on the workbench was disorganized and messy. Since all Markforged employees (not just our Engineering department) have access to our in-house 3D printer farm, they knew they had the tools to innovate on a solution.

Up close to the dispenser mouth - spools are readily accessible with plenty of room to allow a hand to reach in

Jazmin designed an efficient workflow and concept for ideal dispensing functionality in the form of a 3D printed spool dispenser mouth that used a length of polycarbonate tube as a spool magazine, and then collaborated with Faisal to leverage his 3D modeling skills to bring physical form to her solution. Faisal’s design showcases his personal flair for adding features that end up providing indispensable functionality beyond the initial intended use case – here he added mounting points for zip-ties near the base of the dispenser that we later found useful when we repurposed some extra dispenser prints for use elsewhere in the company.

One of the first iterations of the design imported in Eiger

This phase of the design also highlighted another strength of 3D printing, fast iteration times. After the first prototype was produced, supplier tolerance variation in the outer diameter of the polycarbonate tube required a slight modification of the dispenser geometry. Unlike with most other manufacturing processes, by 3D printing the piece, Faisal was able to quickly modify the 3D model in Solidworks, import a new STL file into Eiger, and send the part to the printer. No personnel were needed to monitor the progress of the part manufacture, as is necessary with one-off CNC machining, and the new dispenser was ready to be installed on the production line the next day.

Jazmin and Faisal's spool dispenser, at home on the production line next to an unorganized spool pile it replaced

This type of continuous innovation and improvement has long been solely the domain of software engineers, as the realities of manufacturing physical parts have historically relegated engineers and designers to much slower, longer lead time design processes with a much higher barrier to actually testing out possible solution implementations. The advent of widespread 3D printing capabilities has begun to change this to some degree, but the lack of strength and function associated with most affordable 3D printers has still limited the ability of hardware teams to actually prototype parts comparable with the higher strength, longer lead time aluminum versions they often rely on for functional development purposes. Markforged printers change everything about this design paradigm – they completely revolutionize the way that you can think about prototyping, empowering your entire team to continuously contribute to the improved functioning of your company.

所有博客和博客中包含的信息版权均归 Markforged 公司所有,未经我们的书面许可,不得以任何方式复制、修改或采用。我们的博客可能包含我们的服务标志或商标,以及我们附属公司的服务标志或商标。未经我们事先许可,您使用我们的博客并不构成您使用我们的服务标记或商标的任何权利或许可。Markforged 博客中提供的信息不应被视为专业建议。我们没有义务根据新信息、后续事件或其他情况更新或修订博客。

不错过任何一篇文章

订阅以在您的收件箱中获取新的 Markforged 内容